Diverse Skies: Embracing the Cessna 150 Experience

Today I took a Cessna 150 out for a solo spin! Now, I’ve got some experience under my belt with a Cessna 172, around 15 hours or so, and I’ve dipped my toes into the world of the 150 for about 2 hours. One of those hours was basically just to show that I’ve got the hang of things and can handle the Cessna 150. Having passed the handling assessment, the kind folks at The Light Aircraft Company (TLAC) over at Little Snoring airfield are allowing me to rent their 150.

You might be wondering why I’m renting the 150. Well, our trusty Europa is temporarily out of commission, waiting for some TLC. And while I love flying around and teaching in the C42, every now and then, it’s nice to fly something different.

Cessna C150 G-GFLY

TLAC’s 150 is affordable and conveniently located for me. So, it’s a win-win.

Now, let’s talk about the flying experience. Flying the 150 is a different ball game compared to the C42 or our speedy Europa. The 150 takes its time getting off the ground and climbing, kind of like driving a minibus, whereas the C42 feels more like a sports car. And then there’s our Europa XS Tri-gear, which falls somewhere in between during the climb. The Europa might take a bit more time to climb than the C42, but once it’s cruising, it leaves both the C42 and the 150 for dust cruising at 120-130kt.

But honestly, flying is flying, no matter how you slice it. Whether it’s a Microlight, a GA plane, or something else.

Occasionally we do get some Cessna pilots dropping in for training on a C42, and they sometimes find it a bit tricky to master the landing in the lighter C42. Well, I guess I now understand why, Landing the Cessna 150 almost feels like it’s doing the job itself!

So, my adventure today lasted about an hour. I headed out to explore the breathtaking coastline of North Norfolk before returning to Little Snoring.

Stunning coastline

After a smooth landing and a bit of taxiing, I ended up having a chat with David, who works at TLAC. He was busy with an Ikarus C42, setting up a transponder and testing it with a laptop. And here’s a cool twist—I found out they were using software that I’d actually created and shared on this very website! It’s pretty humbling, I won’t lie, as are those emails that pop up every now and then, saying thanks for the software. They really make the time and effort that I put into writing and testing the transponder report program worthwhile.

Transponder testing with Transponder report application written by getyourwings.

Ground plane sizing for radio, transponder and PilotAware

Transponder, radio and PilotAware antenna fitting in a non-metallic skinned aircraft

There is often talk around the hangers about poor radio signals and how some aircraft can be heard from great distances while other fail to make contact with a ground station even nearby. One of the issues often overlooked is a missing or wrongly sizes ground plane. There are many myths about the purpose of a ground plane and I hope in this short article to give you guidance on the correct size and purpose of a ground plane.

Before we look at the ground plane lets set expectation on maximum distance you can be heard.

The civil air band radio is in the VHF (Very High Frequency) band and under normal weather / tropospheric conditions, it requires radio line of sight between the aircraft and the ground station; thus, the maximum range is the distances to the radio horizon from the aircraft to the ground station, for simplification we are assuming the ground station is at sea level.

The radio horizon distance is given by the formula: D= K√h

Where: D = distance in nautical miles (NM), h = height of aircraft’s antenna above ground level and K = 1.23 when h is expressed in feet

So, when we are flying at 2,000ft the maximum range to a sea level ground station is 55.00NM or at 3,000ft 67.34NM

The same is true for transponders, CAP1391 devices e.g. SkyEcho and PilotAware transmissions, however the limited power and antenna arrangement of CAP1391 and PilotAware means the range is less.

What is a ground plane is and why we need one?

Keeping this simple, it provides a ¼ wave monopole antenna (also know as a Marconi) with its required counterpart allowing the flow of the electrical current which generates the electrical and magnetic waves that make up the RF signal. The earth acts as a type of electrical “mirror,” effectively providing the other quarter wavelength making it equivalent to a vertical dipole. This in turn helps present the correct impedance to the transmitter, thus allowing the maximum power transfer into the antenna, which results in the most efficient transmission of the signal. Most antennas sold for Microlights and light aircraft are ¼ wave.

Ground plane

Does size matter?

I’m afraid the answer is yes it does! Bigger is generally better, but again there are exceptions and a minimum size for the efficient working. The minimum size is a radius of ¼ the wave length of the signal being transmitted.  In basic RF theory we were taught that bigger is better, although the benefits of size are less important above 3 times the wave length. In aviation while we are flying along we want our signal to be picked up both above and below the aircraft, the larger the ground plane the bigger the blind spot we will have on the underside of the ground plane.

Is the shape important?

No, a ground planes can be square, circular or many different shapes. Say you had a metal aeroplane, the whole fuselage is the ground plane for your radio antenna, and your transponder antenna. So long as you have at least ¼ wave length in all directions, then the shape doesn’t matter too much. However as we want the lightest ground plane we can get, a circle is the optimum shape and supports equal propagation of the signal in all directions.

What should the thickness of the ground plane be?

Any, you can use foil tape or discs of different thicknesses so long as it is mechanically robust enough and conductive.

Can it be a mesh or does it have to be solid?

It can be a mesh (the tighter the mesh the better) or even multiple radial wires, typically the more the better 8 or 16, but for our purposes a solid circle is normally the easiest and best option.

What should it be made of?

Copper, however it can be any material which is a good conductor. Aluminium is a good conductor and can be used, however you need to be mindful of the galvanic effect between a stainless-steel antenna and the ground plane. This may lead to connection issues in the future, thus I would recommend a thin copper disc.

Why do some avionics companies state to use a square ground plane?

Well I assume this is just convenience, so long as the diameter of the circle below can fit within the square it will work fine. Just make sure the antenna is in the middle!

What does all of this mean in practice?

Minimum diameter of ground planes in aviation should be:

N.B. Always round the ground plane size up not down.

Transponder: frequency 1090MHz, Wave length 275mm, ¼ wave length 68.75mm

Minimum ground plane diameter 137.5mm

Radio: lowest frequency 108MHz, Wave length 2775.85mm, ¼ wave length 693.96mm

Minimum ground plane diameter 1,387.9mm

PilotAware: external antenna fitting, frequency 869.5MHz, Wave length 344.79mm, ¼ wave length 86.19mm

Minimum ground plane diameter 172.39mm

Antenna Theory Is Complicated

Antenna theory is complicated, but if you have a ground plane with the correct minimum size and the antenna mounted in the middle this will be one less problem.  But let’s quickly prove this is fact and not just some text book exercise. As an extreme lets consider an antenna without a ground plane vs the same antenna with a correctly sized ground plane.

An external PilotAware antenna without a ground plane is put under test using a low cost VNA (Vector Network Analyser)




As can be seen opposite the resonant frequency of this antenna is not 869.5MHz as it should be! It is showing a resonant of over 1GHz. The impedance and VSWR for the antenna was also way out, in fact the reflections from the imbalance could damage the transmitter or at best the radiated signal will not be optimal.

Let’s add a make shift ground plane out of kitchen foil of the recommended size above.




opposite you can see the effect of adding the ground plane. The resonant frequency has shifted down to be close to the 869.5MHZ that we are looking for, the VSWR was down to acceptable limits and the impedance was close to 50 ohms.

Hopefully this graphically demonstrates the importance of having a correctly sized ground plane!

One last Fact! The monopole antenna was invented in 1895 by radio pioneer Guglielmo Marconi

What is EC or should I say Electronic Conspicuity or even ADS-B In and Out?

PilotAware

What is EC or should I say Electronic Conspicuity or even ADS-B In and Out?

And why do we care anyway!

In today’s world of aviation, technology is becoming the norm and if that helps to increase safety then I for one am in favour of it and I hope you are too.

It was not long after I got my NPPL that I was using and EC in the form of the then beta product of an upcoming technology called Pilotaware. Fast forward a number of years and Pilotaware, SkyEcho 2, Stratux, Power FLARM and more are all affordable in cockpit EC devices. Add to these the traditional transponders which have various modes A, C and S as well as ADS-B Out and some systems having ADS-B In and then there is weather reception, TCAS and secondary surveillance radar (SSR) too!

So as a member of both the UK Microlight and GA community what is best for me and what do all the TLAs (Three Letter Acronym) mean?

ADS-B stands for Automatic dependent surveillance-broadcast, for your starter (yes I know that is a four-letter acronym).

But first to set the scene, I would not consider myself an expert, but I do have some knowledge having researched the subject to enable me to write my transponder decode application which is available for free download from this site.

The short version of this blog is that I remain happy with my current combination of devices, which consist of ADS-B Out, and Pilotaware for ADS-B In and Pilotaware device reception including OGN (Open Glider Network) when near a ground station that is up-linking and all displayed on SkyDemon.

 

The Transponder

The transponder is a powerful device and comes with various modes depending on its age and capabilities. Older aircraft have Mode A & C with newer Aircraft/transponders having Mode S also

Mode A: In response to Mode A interrogation the transponder transmits an identity code for the aircraft in the octal range 0000-7777 the Squawk code.

Mode C: Transmits the aircraft’s pressure altitude automatically and augments mode A hence sometimes called mode A/C

Trig Transponder

Mode S: Mode S has over 17 million unique 24-bit aircraft addresses known as the ICAO number or mode S address allowing the unique identification of every aircraft, altitude reports in 25 feet increments and the call sign (or tail number) is transmitted along with other information also.

Unlike traditional Secondary Surveillance Radar (SSR) stations which elicit multiple replies containing the same information from all aircraft within their range, Mode S makes selective (Mode S is abbreviated from Mode Select) interrogations of each specific aircraft. ‘All call’ interrogations are also made to identify new aircraft to be interrogated. Mode S transponders are backward compatible with Mode A/C radars.

Civilian Mode S supports a number of different messages Each message has a particular purpose. The formats DF0, DF4, DF5, DF11, DF16, DF20, DF21 and DF24 are used in civil aviation at present.

Number Message
DF0 Short Air to Air ACAS
DF4 Surveillance (roll call) Altitude
DF5 Surveillance (roll call) IDENT Reply
DF11 Mode S Only All-Call Reply (Acq. Squitter if II=0)
DF16 Long Air to Air ACAS
DF20
DF21
Comm. B Altitude, IDENT Reply
DF24 Comm. D Extended Length Message (ELM)

 

Location Reporting

Now some people think as they have a mode S transponder it transmits their position and that their exact location is displayed to other aircraft, but this is not the case. Location information is transmitted in the ES (Extended Squitter) messages DF17 and DF18.

 

DF17 1090 Extended Squitter
DF18 1090 Extended Squitter, supplementary

 

For a mode S transponder to transmit ES DF17 (we will come to DF18 later) the transponder must be connected to a position source i.e. a GPS, and these come in different levels of certification from uncertified up. This configuration is known as ADS-B Out.

It is DF17 (and DF18) that devices like Pilotaware and SkyEcho use to show the exact location of other Aircraft. For non-ADS-B Out aircraft, they use the signal strength only to show proximity but, not location and they show altitude received too.

If only ADS-B Out gives the position how does Flight Radar 24 and 360Radar work their magic and show position of the other aircraft without ADS-B Out? Well, this is done by a system called MLAT which is out of scope for this blog as it requires multiple ground stations.

So DF18, this is essentially the same as DF17, however, it is the message used by a new breed of EC devices which are low power and low cost. They are regulated under CAP 1391. CAP 1391 (First published 2016) specifies Electronic Conspicuity devices that have the ability to signal their presence to other airspace users, thereby turning the “see-and-avoid” concept into “see-BE SEEN-and-avoid”.

It must be noted that CAP1391 states that they must not transmit if carried in an aircraft equipped with a Mode S transponder as this will result in mode S messages and DF 18 being broadcasted.

A system receiving DF18 implicitly knows it cannot interrogate that device, hence no aircraft can transmit DF18 if it has a mode S transponder as it will block or confuse SSRs (CAP1391 6.35). You cannot switch your mode S transponder off due to SERA.13001.

SERA.13001 requires the pilot of an aircraft equipped with a serviceable SSR (Mode S) transponder to operate the transponder at all times during flight.

Additionally, these new devices are intended for UK Annex II aircraft; non-complex EASA aircraft of <5700kg MTOM and for gliders and balloons. (CAP1391 Executive summary 7).

Lastly, they do not allow access to TMZs.

 

GPS

Mode S sends more information then just the location received from the location source, it sends information about how reliable that data is and if it were to fail, the size of containment that is required and more.  The data that most advertisers quote is the SIL value but, this is just one of the parameters.

Much is made of some of some of the new devices having a SIL1 GPS  in their ads, however, most have an SDA of 0 which means they are not trusted!

SIL (Source Integrity Level) field is used to define the probability of the reported horizontal position exceeding the radius of containment defined by the NIC value. 0 is unknown integrity or untrusted!

SDA (System Design Assurance) field defines the failure condition that the ADS-B system is designed to support.

NIC (Navigational Integrity Category) is reported in conjunction with the SIL, NIC of 0 is unknown integrity or untrusted!

 

Can I be seen on TCAS?

Yes, if you have a mode C transponder because most TCAS system utilises an aerial array to determine the position of other aircraft using mode C transmissions.

TCAS II has to be linked to a mode S transponder if fitted so its presentence is encoded in the mode S messages. But TCAS systems below version 7.1 don’t use the ADS-B out messages from other aircraft.

TCAS II Hybrid Surveillance does use Mode S messages but currently has limited adoption.

Hybrid surveillance is a method that decreases the number of Mode S surveillance interrogations made by an aircraft’s TCAS II unit. This feature, new to TCAS II version 7.1, may be included as optional functionality in TCAS II units. TCAS II units equipped with hybrid surveillance use passive surveillance instead of active surveillance to track intruders that meet validation criteria and are not projected to be near-term collision threats. With active surveillance, TCAS II transmits interrogations to the intruder’s transponder and the transponder replies provide range, bearing, and altitude for the intruder. With passive surveillance, position data provided by an on-board navigation source is broadcast from the intruder’s Mode S (ADS-B Out) transponder. The position data is typically based on GNSS and received on own aircraft by the use of Mode S extended squitter, i.e. 1090 MHz ADS-B, also known as 1090ES. Standards for Hybrid Surveillance have been published in RTCA DO-300. The intent of hybrid surveillance is to reduce the TCAS II interrogation rate through the judicious use of validated ADS-B data provided via the Mode S extended squitter without any degradation of the safety and effectiveness of TCAS II.

 

What to buy?  

Should you buy a CAP 1391 device such as a SkyEcho 2? Well that’s up to you but, if you have a Mode S transponder you will need to disable the only feature it has over Pilotaware, which costs less and has mode compatibility with other systems.

If you don’t have a Mode S transponder then Yes, it is an option and will increase your visibility, but not to most TCAS equipped aircraft including military jets and helicopters as they are looking for mode C transmissions.

 

Conclusion

Finally, for me a proper transponder with ADS-B Out (certified GPS or uncertified) is also essential in the increasingly busy skies for your visibility and Pilotaware as your ADS-B In device gives you the best low-cost solution currently.

Today I was told a story of an instructor doing a PFL and they got a Mode C alert on Pilotaware but, at first could not see the other aircraft. Then at a low level saw a chinook below them. The instructor’s aircraft also had a transponder with Mode A/C and S also with ADS-B out, so the TCAS in the Chinook would have been going off too. “see-BE SEEN-and-avoid” in action.